High-pressure transformations in xenon hydrates.

نویسندگان

  • Chrystèle Sanloup
  • Ho-kwang Mao Hk
  • Russell J Hemley
چکیده

A high-pressure investigation of the Xe*H(2)O chemical system was conducted by using diamond-anvil cell techniques combined with in situ Raman spectroscopy, synchrotron x-ray diffraction, and laser heating. Structure I xenon clathrate was observed to be stable up to 1.8 GPa, at which pressure it transforms to a new Xe clathrate phase stable up to 2.5 GPa before breaking down to ice VII plus solid xenon. The bulk modulus and structure of both phases were determined: 9 +/- 1 GPa for Xe clathrate A with structure I (cubic, a = 11.595 +/- 0.003 A, V = 1,558.9 +/- 1.2 A(3) at 1.1 GPa) and 45 +/- 5 GPa for Xe clathrate B (tetragonal, a = 8.320 +/- 0.004 A, c = 10.287 +/- 0.007 A, V = 712.1 +/- 1.2 A(3) at 2.2 GPa). The extended pressure stability field of Xe clathrate structure I (A) and the discovery of a second Xe clathrate (B) above 1.8 GPa have implications for xenon in terrestrial and planetary interiors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Scale Nanosecond Simulations of the Dynamics of the Xe + H2O System

Large-scale molecular dynamics simulations of the high-pressure transformations of the xenon/water system were performed involving special purpose molecular dynamics machines. We investigated several systems of different sizes and geometry at the suitable simulational conditions (density, temperature, etc.), which are similar to the experiments conducted on the xenon hydrates. A binary mixture ...

متن کامل

Clathrate hydrates as a sink of noble gases in Titan’s atmosphere

We use a statistical thermodynamic approach to determine the composition of clathrate hydrates which may form from a multiple compound gas whose composition is similar to that of Titan’s atmosphere. Assuming that noble gases are initially present in this gas phase, we calculate the ratios of xenon, krypton and argon to species trapped in clathrate hydrates. We find that these ratios calculated ...

متن کامل

P 01 High - pressure gas hydrates

Many simple gases that do not interact strongly with water form crystalline hydrates in which the gas molecules or atoms occupy ‘cages’ formed by a framework of water molecules. These clathrate hydrates are stabilised by hydrophobic gas-water interactions and are model systems for the study of these interactions. Many gas hydrates also occur in nature and their properties provide a basis for mo...

متن کامل

High-pressure gas hydrates.

It has long been known that crystalline hydrates are formed by many simple gases that do not interact strongly with water, and in most cases the gas molecules or atoms occupy 'cages' formed by a framework of water molecules. The majority of these gas hydrates adopt one of two cubic cage structures and are called clathrate hydrates. Notable exceptions are hydrogen and helium which form 'exotic' ...

متن کامل

Extending the shelf-life of asparagus spears with a compressed mix of argon and xenon gases

Noble gases that form clathrate hydrates when dissolved into water and restrict water molecule activity can prolong the shelf life of fruits and vegetables. Physiological and physical aspects of asparagus spears treated with mixtures of compressed (1.1MPa absolute) argon (Ar) and xenon (Xe) (2:9 in partial pressure) were compared with controls under normal preservation in modified atmosphere pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2002